在机器学习框架内的特定主题领域中工作(在我们的例子中为3D),有必要了解主要的数据集是什么,在这些数据集的基础上进行模型的训练和测试,以及考虑到数据的细节而存在哪些库和程序用于舒适的工作。
3D ML 3D .
3D ML :
IT- “VR/AR & AI” — PHYGITALISM.
Datasets
, , . , . 3D ML .1. github ( geometricdeeplearning.com Tutorials).
.1 3D ML.
, ( , ), . -, : , ( ShapeNet). -, , , , .
.2 3D Geometric Deep Learning SGP 2018.
, , , , , .
, GDL.
1. ShapeNet (2015) [1]
3 (.obj ), 4 . . : , , . (SHREC, ICCV) 3D ML.
:
- ShapeNetCore: 51300 55 .
- ShapeNetSem: 12000 270 .
2D-to-3D , 3D . , , , .
2. ModelNet (2015) [2]
127915 3D 662 ( .off).
:
- ModelNet10: 4899 10 .
- ModelNet40: 12311 40 , .
, “ModelNet Benchmark”. ShapeNet , , .
3. Pix3D (2018) [3]
395 3D .obj .mat (.mat Matlab , scipy.io). 9 , . , , 3D .
4. ABC dataset (2019) [4]
CAD . , , , , .
, , GDL ADASE . 3D ML ADASE , .
.3 3D [4].
5. VOCASET: Speech-4D Head Scan Dataset (2019) [5]
VOCASET — 4D face dataset 29- , 60 . 12 480 3-4 , , .
6. ScanNet (2017) [6]
RGB-D , 2,5 1500 , 3D-, .
, (indoor scene), , .
7. Semantic3D (2017) [7]
, 3D , (outdoor scene) 4 , .
KITTY, Semantic3D , .
8. Campus3D (2020) [8]
. 3D ( 900 ).
.4 [8].
Frameworks
.5 , Kaolin [9].
, , , , , (.. train/test pipelines). , . .
, , , 3D . Blender, PCL (Point cloud library) MeshLab. , Python, ( Tensorflow Pytorch) .
Unity 3D Unity ML agents , ( RL ). ML agents RL : , , , .
, 3D ML (. Kaolin .5):
- 3D ;
- ( );
- — , (, , ) . — , , . ( : 1, 2, 3; : redner, softras, pytorch3d expl; medium paper);
- 3D ;
- (model zoo) SOTA 3D ;
- 3D ;
- .
, [9] NVIDIA Kaolin, [10] PyTorch3D, TensorFlow Graphics [11].
, , : , polyscope, , , mesh_to_sdf.
1. PyTorch Geometric (Fey & Lenssen: Department of Computer Graphics TU Dortmund University | 2019) [12]
— PyTorch, , . , . .
, PyTorch Geometric 3D ML, . — . . PyTorch3D.
: Linux; Windows; Mac (CPU only).
2. TensorFlow Graphics (Google Brain | 2019) [11]
PyTorch Geometric, TensorFlow Graphics .
, TensorBoard, 3D . ( TensorFlow PyTorch), TensorBoard 3D.
, TensorFlow Graphics . .
: Linux; Windows; Mac.
3. NVidia Kaolin (NVidia | 2019) [9]
3D ML, ( ). — , .
, , .
: Linux; Windows (unstable).
.7 Kaolin [9].
4. PyTorch 3D (Facebook research | 2019) [10]
Linux , , (. PyTorch Geometric + trimesh + polyscope) 3D ML.
CPU GPU. , 3D ML: chamfer loss, , , , 3D PyTorch .
: Linux; Mac; Windows (unstable).
5. Points 3D (Chaton & Chaulet: Principia Labs | 2020)
. SOTA , .
CPU GPU. , .
: Linux; Mac; Windows.
.8 Jupyter Lab , Points 3D .
1. Kornia (2019) [50]
3D ML , , geometrical deep learning Kornia PyTorch.
.9 [13].
, , , Kornia , 3D ML , RGB-D .
2. Polyscope
. trimesh ( ). , . .
.10 Polyscope.
3. trimesh
:
- ;
- (ICP .);
- , .;
- .
.
.
4. mesh_to_sdf
.11 SDF mesh_to_sdf .
SDF . non-watertight meshes: , , , .. non-manifold .
DeepSDF [14].
5. Open3D [15]
trimesh. Python C++. .
— deep learning machine learning. 3D ML , , , .
, , . PyTroch3D + , trimesh, PCL Open3D ( C++ ), Python API Blender, .
"SGP 2020 Graduate School: Black Box Geometric Computing with Python", Python, , 3D .
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015 [project page]
[2] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao 3D ShapeNets: A Deep Representation for Volumetric Shapes Proceedings of 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015) [project page]
[3] X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B. Tenenbaum, and W. T. Freeman. Pix3d: Dataset and methods for single-image 3d shape modeling. In CVPR, 2018 [project page]
[4] Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., Alexa, M., Zorin, D. and Panozzo, D., 2019. ABC: A Big CAD Model Dataset For Geometric Deep Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 9601–9611). [project page]
[5] Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A. and Black, M.J., 2019. Capture, learning, and synthesis of 3d speaking styles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 10101-10111). [project page]
[6] Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T. and Nießner, M., 2017. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5828-5839). [project page]
[7] Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K. and Pollefeys, M., 2017. Semantic3d. net: A new large-scale point cloud classification benchmark. arXiv preprint arXiv:1704.03847. [project page]
[8] Li, X., Li, C., Tong, Z., Lim, A., Yuan, J., Wu, Y., Tang, J. and Huang, R., 2020. Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical Understanding of Outdoor Scene. arXiv preprint arXiv:2008.04968. [project page]
[9] Jatavallabhula, Krishna Murthy, Edward Smith, Jean-Francois Lafleche, Clement Fuji Tsang, Artem Rozantsev, Wenzheng Chen, Tommy Xiang, Rev Lebaredian and Sanja Fidler. “Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research.” ArXivabs/1911.05063 (2019): n. pag. [project page]
[10] Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J. and Gkioxari, G., 2020. Accelerating 3D Deep Learning with PyTorch3D. arXiv preprint arXiv:2007.08501. [github page]
[11] Valentin, J., Keskin, C., Pidlypenskyi, P., Makadia, A., Sud, A. and Bouaziz, S., 2019. Tensorflow graphics: Computer graphics meets deep learning. [project page]
[12] Fey, M. and Lenssen, J.E., 2019. Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428. [project page]
[13] Riba, E., Mishkin, D., Ponsa, D., Rublee, E. and Bradski, G., 2019. Kornia: an open source differentiable computer vision library for pytorch. arXiv preprint arXiv:1910.02190. [project page]
[14] Park, J.J., Florence, P., Straub, J., Newcombe, R. and Lovegrove, S., 2019. Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 165-174). [github page]
[15] Zhou, Q.Y., Park, J. and Koltun, V., 2018. Open3D: A modern library for 3D data processing. arXiv preprint arXiv:1801.09847. [project page]