我们将记住的CVPR2020。计算机视觉会议如何在线发展

你好!我是Yandex研究小组的研究员Valentin Khrulkov。我们定期参加行业会议,然后在哈布雷(Habré)上分享我们的印象:记住哪个发言人,哪个摊位不容忽视,谁的海报吸引了最多的关注。2020年对通常的时间表进行了重大调整:许多活动被取消并重新安排,但其中一些组织者冒着尝试新格式的风险。



CVPR 2020有7600名参与者,5025个作品,事件和互动,1,497,800分钟的讨论-一切都在线。更多细节正在削减中。







状况:计划与现实



Conference on Computer Vision and Pattern Recognition — — . : , — , «». CPRV — A, A1 A* — , ICCV ECCV. : 20% . — : , . — 25% . 6656 , — 1470, — 335. — , , . -.



: — , — , , — Zoom. , , , - -. , , . , :





  • -: 350–500$. , ICLR, , 100$.
  • . : - - .
  • : , , , .
  • : . , 12 : , . . , .




  • : .
  • : .
  • .
  • : .
  • .


cvpr20.com:





: VS



: — , — . : , , ?

, , -: , . - : ? — . Zoom, .



Efficient Data Annotation for Self-Driving Cars via Crowdsourcing on a Large-Scale , 70 — - , - . ( , , , ). : . , , : , .



- , , — - , - , . , , .



, . , . , : 2D- () 3D- ( , ). , SD , . : , .





, , . — , 100 ( , ). — 30 000 , . : , «» — , . :







! , . Kitware, IBM Cornell, , .



Cross-Batch Memory for Embedding Learning:





: , . - GPU : .



: , , , , , / . ( ) .



CNN-generated images are surprisingly easy to spot… for now:





( GAN’) , : . , state-of-the-art GAN’, , .



: , . , , GAN, , .



Learning Better Lossless Compression Using Lossy Compression: ,





(lossless). : state-of-the-art (lossy), lossless .



, lossless . , CVPR , , , lossless-JPEG2000 WebP.



Image Processing Using Multi-Code GAN Prior:





, GAN , , ? , ?



, : , , Prior GAN — , , .



Effectively Unbiased FID and Inception Score and where to find them: GANs



FID . , .



, . , , , , .



FDA: Fourier Domain Adaptation for Semantic Segmentation:





domain adaptation: - - . , /. .



Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline:





HDR (High Dynamic Range) LDR (Low Dynamic Range) : , , . LDR-HDR . : state-of-the-art, , .



A Multigrid Method for Efficiently Training Video Models: tradeoff





, , : , . , .



, : , , , . ( «», ). : 4,5 .



Towards Robust Image Classification Using Sequential Attention Models:





DeepMind ( CNN, LSTM ) — ( ) () . :



  1. Feedforward : , .
  2. «» : . , .


LSTM, ResNet': , — , — .



150 TPU , , . , «» , - .



Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization:





. generalization gap adversarial training ( 40%). :



  1. Mixup — .
  2. Label smoothing — - one-hot target, u: — u, (1 — u) .


. x x* ( PGD ), «adversarial vertex kx*», , x. , mixup (x kx*).



— ( ) (, , ).



, — SOTA — , PGD .



High-Resolution Daytime Translation Without Domain Labels:





, , ? , . , unsupervised .



: AdaIN , (style transfer) skip-connections, . , (1024 x 1024) : .



Hyperbolic Image Embeddings:



NLP 2017 , . , — , — : «-»? : — , — , .



Yandex Research , : ? : . , , : 10%. — .





, CVPR 2020 - . , , .



, , , , — , . , . !




All Articles