创建提案嵌入的方法概述,第1部分

想象一下写一个句子并找到一个类似意思的句子会多么方便。为此,您需要能够对整个句子进行矢量化处理,这可能是一项非常艰巨的任务。



根据我的工作细节,我必须搜索对支持服务的类似请求,即使标记相当大,也可能很难收集所需的与主题相关但以不同文字书写的消息数量。



下面是对矢量化整个句子的方式进行的概述研究,不仅考虑矢量化,还考虑了句子的含义对矢量化句子的尝试。



例如,两个短语“ epl优于三星”中“三星比epl更好”应该在向量值之一的另一端,但同时在其他向量值中重合。



可以用下面的图片进行类比。从杯形蛋糕到狗的规模,它们位于不同的末端,并且根据黑点的数量和物体的颜色,它们合而为一。



https://cdn-media-1.freecodecamp.org/images/1*bt-E2YcPafjiPbZFDMMmNQ.jpeg



这是关于句子向量化的文章的集合



文章中的方法非常简单且有趣,但是缺点是:



  1. 他们用英语测试
  2. 在每篇文章中都写到他们已经超越了前辈,但是比较是在不同的数据集上进行的,因此无法进行评级


— 7 .









  1. BOW

    1.1. BOW

    1.2. BOW c

    1.3. BOW

    1.4. LDA
  2. ,

    2.1

    2.2

    2.3 tf-idf
  3. Languade Models

    3.1 Language Model on embedings

    3.2 Language Model on index
  4. BERT

    4.1 rubert_cased_L-12_H-768_A-12_pt

    4.2 ru_conversational_cased_L-12_H-768_A-12_pt

    4.3 sentence_ru_cased_L-12_H-768_A-12_pt

    4.4 elmo_ru-news_wmt11-16_1.5M_steps

    4.5 elmo_ru-wiki_600k_steps

    4.6 elmo_ru-twitter_2013-01_2018-04_600k_steps


  5. 5.1 embedings -> embedings

    5.2 embedings -> indexes

    5.3 LSTM -> LSTM

    5.4 LSTM -> LSTM -> indexes
  6. Transfer Learning

    6.1 BOW

    6.2 LSTM + MaxPooling

    6.3 LSTM + Conv1D + AveragePooling

    6.4 LSTM + Inception + Attention
  7. Triplet loss

    7.1 Triplet loss BOW

    7.2 Triplet loss embedings




import pandas as pd
import numpy as np
from collections import defaultdict, Counter
import random
from tqdm.notebook import tqdm
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_distances, euclidean_distances
from sklearn.decomposition import LatentDirichletAllocation

from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical

from tensorflow.keras.layers import Input, Bidirectional, LSTM, Dense, MaxPooling1D, AveragePooling1D, Conv1D
from tensorflow.keras.layers import Flatten, Reshape, Concatenate, Permute, Activation, Dropout, multiply
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.models import Model
from tensorflow.keras.losses import cosine_similarity
from tensorflow.keras import regularizers
import tensorflow.keras.backend as K
import tensorflow as tf

import pymorphy2
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
import numpy as np
import matplotlib.pyplot as plt
import pickle
import os
import re
from conllu import parse_incr








files = {'train': 'ru_syntagrus-ud-train.conllu',
         'test':  'ru_syntagrus-ud-test.conllu',
         'dev':   'ru_syntagrus-ud-dev.conllu'}
database = {}
for data_type in files:
    filename = files[data_type]
    database = {}
    with open(os.path.join('UD_Russian-SynTagRus-master', filename), encoding='utf-8') as f:
        parsed = parse_incr(f)
        for token_list in parsed:
            topic_name = token_list.metadata['sent_id'].split('.')[0]
            #     
            topic_name = re.sub(r'\d+', '', topic_name)
            if topic_name not in database:
                database[topic_name] = []
            sentence = ' '.join([token['form'] for token in token_list]).lower()
            database[topic_name].append(sentence)


, .



choosen_for_evaluation = ['I_slepye_prozreyut',
                          'Interviyu_Mariny_Astvatsaturyan',
                          'Byudzhet']
texts_for_evaluation = {}
texts_for_training = {}
for topic in database:
    if topic in choosen_for_evaluation:
        texts_for_evaluation[topic] = database[topic]
    else:
        texts_for_training[topic] = database[topic]

TEXTS_CORPUS = [sentence for topic in texts_for_training for sentence in texts_for_training[topic]]

#  
for topic in texts_for_evaluation:
    print(topic, len(texts_for_evaluation[topic]))
    for index, sentence in enumerate(texts_for_evaluation[topic]):
        print('\t', sentence[:100])
        if index > 5:
            break
    print('\n')




Byudzhet 70
        .  .
            .
      ii   .
       ,        "  " .
           ,  
             ,  ,  … - 
        "  " ,     

Interviyu_Mariny_Astvatsaturyan 72
     "        " .
     -   ,  ,     ?     ?
     -     ,  1993- .
          "   "    
        ,     ,    -  
              .
           "  " ,    

I_slepye_prozreyut 72
      ,       ,  
                .
         ,    
                
               
       ,    ,     .


get_similarity_values, . .



: 3 70, 72 72 . , , . . .. , +214 , , -213 .. .



= sum(214… 214 — 72) — sum(214-72… 0) + 7626 = 10395



= -sum(214… 72) + sum(72… 0) + 7626 = -10053



np.random.seed(42)
random.seed(777)

index2topic = {}
index2text = {}
index = 0
for topic in texts_for_evaluation:
    for sentence in texts_for_evaluation[topic]:
        index2topic[index] = topic
        index2text[index] = sentence
        index += 1

def get_similarity_values(sentences):
    return np.random.rand(len(sentences), len(sentences))

chart_methods = {}
bottom_minimum = -7626.2336448598135

def evaluate(get_similarity_values, method_name=None, add_to_chart=True):
    test_messages = [index2text[index] for index in range(len(index2text))]
    distances_each_to_each = get_similarity_values(test_messages)
    evaluations = []
    for target_index in index2topic:
        distances = distances_each_to_each[target_index]
        distances_indexes = sorted(zip(distances, range(len(index2topic))), key=lambda x: x[0])
        evaluation_result = 0
        for i, (distance, index) in enumerate(distances_indexes):
            if index2topic[index] == index2topic[target_index]:
                evaluation_result += len(test_messages) - i
            else:
                evaluation_result -= len(test_messages) - i
        evaluations.append(evaluation_result)        
    #      (baseline)
    result = round(np.mean(evaluations) - bottom_minimum, 1)
    if add_to_chart:
        #  ,      
        if method_name not in chart_methods or result > chart_methods[method_name][0]:
            chart_methods[method_name] = (result, np.std(evaluations))
    return f'{method_name}: {str(result)}'

def parse_result(result):
    return float(new_result.split(': ')[1])

evaluate(get_similarity_values, 'random arrange')


'random arrange: 0.0'



1. BOW



1.1 BOW



, ( ).



count_vectorizer = CountVectorizer()
corpus = TEXTS_CORPUS
count_vectorizer.fit(corpus)

def get_similarity_values(sentences):
    sentences_bow = count_vectorizer.transform(sentences)
    distances = cosine_distances(sentences_bow, sentences_bow)
    return distances

evaluate(get_similarity_values, 'BOW')


'BOW: 693.1'



1.2 BOW



, .



morph = pymorphy2.MorphAnalyzer()

def lemmatize(corpus, verbose=False):
    clear_corpus = []
    if verbose:
        iterator = tqdm(corpus, leave=False)
    else:
        iterator = corpus
    for sentence in iterator:
        tokens = sentence.split() #    
        res = []
        for token in tokens:
            p = morph.parse(token)[0]
            res.append(p.normal_form)
        clear_corpus.append(' '.join(res))
    return clear_corpus

count_vectorizer = CountVectorizer()
corpus = lemmatize(TEXTS_CORPUS, True)
count_vectorizer.fit(corpus)

def get_similarity_values(sentences):
    sentences_bow = count_vectorizer.transform(lemmatize(sentences))
    distances = cosine_distances(sentences_bow, sentences_bow)
    return distances

evaluate(get_similarity_values, 'BOW   ', False)


'BOW : 1645.8'



1.3 BOW



ru_stopwords = stopwords.words('russian')
ru_stopwords += ['.', ',', '"', '!',
                 '?','(', ')', '-',
                 ':', ';', '_', '\\']

def delete_stopwords(corpus, verbose=False):
    clear_corpus = []
    if verbose:
        iterator = tqdm(corpus, leave=False)
    else:
        iterator = corpus
    for sentence in iterator:
        tokens = sentence.split() #    
        res = []
        without_stopwords = [token for token in tokens if token not in ru_stopwords]
        clear_corpus.append(' '.join(without_stopwords))
    return clear_corpus

count_vectorizer = CountVectorizer()
corpus = lemmatize(delete_stopwords(TEXTS_CORPUS), True)
count_vectorizer.fit(corpus)

def get_similarity_values(sentences):
    sentences_bow = count_vectorizer.transform(lemmatize(delete_stopwords(sentences)))
    distances = cosine_distances(sentences_bow, sentences_bow)
    return distances

evaluate(get_similarity_values, 'BOW      ')


'BOW : 1917.6'



1.4 LDA



def similarity_values_wrapper(lda, count_vectorizer, do_lemmatize=False, do_delete_stopwords=False):
    def get_similarity_values(sentences):
        if do_delete_stopwords:
            sentences = delete_stopwords(sentences)
        if do_lemmatize:
            sentences = lemmatize(sentences)

        sent_vector = count_vectorizer.transform(sentences)
        sent_vector = lda.transform(sent_vector)
        distances = cosine_distances(sent_vector, sent_vector)
        return distances
    return get_similarity_values

lda = LatentDirichletAllocation(n_components=300)
corpus = TEXTS_CORPUS
count_vectorizer = CountVectorizer().fit(corpus)
corpus = count_vectorizer.transform(corpus)
lda.fit(corpus)
get_similarity_values = similarity_values_wrapper(lda, count_vectorizer)

print(evaluate(get_similarity_values, 'LDA', False))

lda = LatentDirichletAllocation(n_components=300)
corpus = lemmatize(TEXTS_CORPUS, True)
count_vectorizer = CountVectorizer().fit(corpus)
corpus = count_vectorizer.transform(corpus)
lda.fit(corpus)
get_similarity_values = similarity_values_wrapper(lda, count_vectorizer, do_lemmatize=True)

print(evaluate(get_similarity_values, 'LDA  ', True))

lda = LatentDirichletAllocation(n_components=300)
corpus = lemmatize(delete_stopwords(TEXTS_CORPUS), True)
count_vectorizer = CountVectorizer().fit(corpus)
corpus = count_vectorizer.transform(corpus)
lda.fit(corpus)
get_similarity_values = similarity_values_wrapper(lda, count_vectorizer, do_lemmatize=True, do_delete_stopwords=True)

print(evaluate(get_similarity_values, 'LDA      ', False))


LDA: 344.7

LDA : 1092.1

LDA : 1077.2



%matplotlib inline
def plot_results():
    methods = sorted(chart_methods.items(), key=lambda x: x[1][0])

    labels = [m[0] for m in methods]
    x_pos = np.arange(len(labels))
    mean = [m[1][0] for m in methods]
    std = [m[1][1] for m in methods]

    # Build the plot
    fig, ax = plt.subplots(figsize=(12,8))
    ax.bar(x_pos,
           mean,
           yerr=std,
           align='center',
           alpha=0.5,
           ecolor='black',
           capsize=10)
    ax.set_ylabel('   ')

    ax.set_xticks(x_pos)
    ax.set_xticklabels(labels, rotation=20, ha='right')
    ax.set_title('  ')
    ax.yaxis.grid(True)
    plt.show()

plot_results()


png



2. ,



.



fasttext.



gensim word2vec.



#   
import fasttext.util
from wikipedia2vec import Wikipedia2Vec
fasttext.util.download_model('ru', if_exists='ignore')

wiki2vec = Wikipedia2Vec.load('ruwiki_20180420_300d.pkl')
ft = fasttext.load_model('cc.ru.300.bin')


2.1



def vectorize(token, use_word2vec=True, use_fasttext=True):
    assert use_word2vec or use_fasttext
    if use_fasttext:
        try:
            fast_text_vector = ft.get_word_vector(token)
        except KeyError:
            fast_text_vector = np.zeros((ft.get_dimension()))

    if use_word2vec:
        try:
            word2vec_vector = wiki2vec.get_word_vector(token)
        except KeyError:
            word2vec_vector = np.zeros((len(wiki2vec.get_word_vector('the'))))

    if use_fasttext and use_word2vec:
        return np.concatenate([word2vec_vector, fast_text_vector])
    elif use_fasttext:
        return np.array(fast_text_vector)
    elif use_word2vec:
        return np.array(word2vec_vector)
    else:
        return 'something went wrong on vectorisation'

print(np.shape(vectorize('any_token')))


def similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances):
    def get_similarity_values(sentences):
        sent_vector = []
        for sentence in sentences:
            sentence_vector = []
            for token in sentence.split():
                sentence_vector.append(vectorize(token, use_word2vec, use_fasttext))
            sent_vector.append(np.mean(sentence_vector, axis=0))
        distances = distance_function(sent_vector, sent_vector)
        return distances
    return get_similarity_values

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings  euclidean_distances  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings  euclidean_distances  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings  euclidean_distances  word2vec'))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances)
print(evaluate(get_similarity_values, '  embedings  cosine_distance  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=cosine_distances)
print(evaluate(get_similarity_values, '  embedings  cosine_distance  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=cosine_distances)
print(evaluate(get_similarity_values, '  embedings  cosine_distance  word2vec'))


embedings euclidean_distances word2vec + fast_text: 1833.6

embedings euclidean_distances fast_text: 913.5

embedings euclidean_distances word2vec: 1941.6

embedings cosine_distance word2vec + fast_text: 2278.1

c embedings cosine_distance fast_text: 829.2

embedings cosine_distance word2vec: 2437.7



2.2



def similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances):
    def get_similarity_values(sentences):
        sentences = delete_stopwords(sentences)
        sent_vector = []
        for sentence in sentences:
            sentence_vector = []
            for token in sentence.split():
                sentence_vector.append(vectorize(token, use_word2vec, use_fasttext))
            sent_vector.append(np.mean(sentence_vector, axis=0))
        distances = distance_function(sent_vector, sent_vector)
        return distances
    return get_similarity_values

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings    euclidean_distances  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings    euclidean_distances  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings    euclidean_distances  word2vec'))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True)
print(evaluate(get_similarity_values, '  embedings    cosine_distance  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True)
print(evaluate(get_similarity_values, '  embedings    cosine_distance  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False)
print(evaluate(get_similarity_values, '  embedings    cosine_distance  word2vec'))


embedings euclidean_distances word2vec + fast_text: 2116.9

embedings euclidean_distances fast_text: 1314.5

embedings euclidean_distances word2vec: 2159.1

embedings cosine_distance word2vec + fast_text: 2779.7

embedings cosine_distance fast_text: 2199.0

embedings cosine_distance word2vec: 2814.4



2.3 tf-idf



tf_idf_vectorizer = TfidfVectorizer()
tf_idf_vectorizer.fit(TEXTS_CORPUS)
vocab = tf_idf_vectorizer.get_feature_names()


def similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances):
    def get_similarity_values(sentences):
        sent_vector = [[]]*len(sentences)
        weights_data = tf_idf_vectorizer.transform(sentences).tocoo()
        for row, col, weight in zip(weights_data.row, weights_data.col, weights_data.data):
            sent_vector[row].append(weight*vectorize(vocab[col], use_word2vec, use_fasttext))

        for row in range(len(sent_vector)):
            if not sent_vector[row]:
                sent_vector.append((len(vectorize('zoros_vector'))))
        sent_vector = np.sum(sent_vector, axis=1)
        distances = distance_function(sent_vector, sent_vector)
        return distances
    return get_similarity_values

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True)
print(evaluate(get_similarity_values,'  embedings  tf-idf  cosine_distance  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True)
print(evaluate(get_similarity_values,'  embedings  tf-idf  cosine_distance  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False)
print(evaluate(get_similarity_values,'  embedings  tf-idf  cosine_distance  word2vec', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values,'  embedings  tf-idf  euclidian_distance  word2vec + fast_text', add_to_chart=True))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values,'  embedings  tf-idf  euclidian_distance  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=euclidean_distances)
print(evaluate(get_similarity_values,'  embedings  tf-idf  euclidian_distance  word2vec', add_to_chart=False))


embedings tf-idf cosine_distance word2vec + fast_text: -133.6

embedings tf-idf cosine_distance fast_text: 9.0

embedings tf-idf cosine_distance word2vec: -133.6

embedings tf-idf euclidian_distance word2vec + fast_text: 6.4

embedings tf-idf euclidian_distance fast_text: -133.6

embedings tf-idf euclidian_distance word2vec: -133.6



plot_results()


png





, .



max_len = 20
min_len = 5
embedding_size = len(vectorize('any token'))

class EmbedingsDataGenerator():
    def __init__(self, texts_corpus=TEXTS_CORPUS, min_len=5, max_len=20, batch_size=32, batches_per_epoch=100, use_word2vec=True, use_fasttext=True):
        self.texts = texts_corpus
        self.min_len = min_len
        self.max_len = max_len
        self.batch_size = batch_size
        self.batches_per_epoch = batches_per_epoch
        self.use_word2vec = use_word2vec
        self.use_fasttext = use_fasttext
        self.embedding_size = len(vectorize('token', use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext))

    def vectorize(self, sentences):
        vectorized_sentences = []
        for text in sentences:
            text_vec = []
            tokens = str(text).split()
            for token in tokens:
                text_vec.append(vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext))
            vectorized_sentences.append(text_vec)
        vectorized_sentences = pad_sequences(vectorized_sentences, maxlen=self.max_len, dtype='float32')
        return vectorized_sentences

    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            X_batch = []
            y_batch = []
            finished_batch = False
            while not finished_batch:
                text = random.choice(self.texts)
                tokens = str(text).split()
                if len(tokens) < self.min_len:
                    continue
                x_vec = []
                for token in tokens:
                    token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)
                    if len(x_vec) >= self.min_len:
                        X_batch.append(x_vec)
                        y_batch.append(token_vec)
                        if len(X_batch) == self.batch_size:
                            X_batch = pad_sequences(X_batch, maxlen=self.max_len, dtype='float32')
                            yield np.array(X_batch), np.array(y_batch)
                            finished_batch = True
                            break
                    x_vec.append(token_vec)

class IndexesDataGenerator(EmbedingsDataGenerator):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.token2index = {}
        index = 0
        for text in self.texts:
            tokens = str(text).split()
            for token in tokens:
                if token not in self.token2index:
                    self.token2index[token] = index
                    index += 1

    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            X_batch = []
            X_batch_indexes = []
            y_batch = []
            finished_batch = False
            while not finished_batch:
                text = random.choice(self.texts)
                tokens = str(text).split()
                if len(tokens) < self.min_len:
                    continue
                x_vec = []
                x_tokens = []
                for token in tokens:
                    token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)
                    if len(x_vec) >= self.min_len:
                        X_batch.append(x_vec)
                        X_batch_indexes.append(to_categorical(x_tokens, num_classes=len(self.token2index)))
                        y_batch.append(self.token2index[token])
                        if len(X_batch) == self.batch_size:
                            X_batch = pad_sequences(X_batch, maxlen=self.max_len, dtype='float32')
                            X_batch_indexes = pad_sequences(X_batch_indexes, maxlen=self.max_len, dtype='int32')
                            y_batch = to_categorical(y_batch, num_classes=len(self.token2index))
                            yield np.array(X_batch), np.array(X_batch_indexes), np.array(y_batch)
                            finished_batch = True
                            break
                    x_vec.append(token_vec)
                    x_tokens.append(self.token2index[token])


, , , 100 32, :



data_generator = EmbedingsDataGenerator()


%%timeit
for x, y in data_generator:
    pass


448 ms ± 65.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)



data_generator = IndexesDataGenerator()


%%timeit
for x_e, x_i, y_i in data_generator:
    pass


5.77 s ± 115 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)



3. Languade Models



. , .

: 20 5.



def similarity_values_wrapper(embedder, vectorizer, distance_function=cosine_distances):
    def get_similarity_values(sentences):
        sent_vec = vectorizer(sentences)
        sent_embedings = embedder(sent_vec)
        distances = distance_function(sent_embedings, sent_embedings)
        return distances
    return get_similarity_values


3.1 Language Model on embedings



def model_builder(data_generator):
    complexity = 500
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X = LSTM(complexity, return_sequences=True)(X)
    X = LSTM(complexity)(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(data_generator.embedding_size, activation='linear')(X)
    model = Model(inputs=inp, outputs=X)
    model.compile(loss=cosine_similarity, optimizer='adam')
    model.summary()
    return model

data_generator = EmbedingsDataGenerator(use_fasttext=False)
next_word_model = model_builder(data_generator)
get_similarity_values = similarity_values_wrapper(next_word_model.predict, data_generator.vectorize)


new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'Language Model on embedings')
        new_result = parse_result(new_result)
        print(i, new_result)
        # stopping condition
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        next_word_model.train_on_batch(x, y)


0 1644.6

3 148.7

6 274.8

9 72.3

12 186.8

15 183.7

18 415.8

21 138.9



3.2 Language Model on token index



def model_builder(data_generator):
    complexity = 200
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X = LSTM(complexity, return_sequences=True)(X)
    X = LSTM(complexity)(X)
    X = Dense(complexity, activation='linear', name='embedding_output')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(len(data_generator.token2index), activation='softmax')(X)
    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()
    embedder = Model(inputs=inp, outputs=model.get_layer('embedding_output').output)
    return model, embedder  

data_generator = IndexesDataGenerator()
next_word_model, embedder = model_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)


new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'Language Model on token index')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x_e, x_i, y in data_generator:
        next_word_model.train_on_batch(x_e, y)


0 1700.6

3 404.7

6 255.3

9 379.8

12 195.2

15 160.1

18 530.7

21 701.9

24 536.9



plot_results()


png








All Articles