TensorFlow + Keras中的RoI池实现

哈Ha!我请您注意Jaime Sevilla 撰写的文章“在TensorFlow + Keras中实现RoI池化”的翻译



我目前正在参加机器学习课程。在“计算机视觉”培训模块中,有必要研究RoI层的合并。以下文章对我来说似乎很有趣,因此我决定与社区分享翻译。



在这篇文章中,我们将解释RoI池(关注区域的基本概念和一般用法,并提供使用TensorFlow Keras层的实现。



这篇文章的目标读者是熟悉(卷积)神经网络(CNN)基本理论并且能够使用Keras构建和运行简单模型的人



如果您只是在这里获取代码,请在此处查看,不要忘记喜欢并分享该文章!



了解RoI池



RoI Pooling由Ross Girshik在Fast R-CNN文章中提出,作为其对象识别管道的一部分。



RoI Pooling的一般用例中,我们有一个图像对象,并通过边界框指定了几个感兴趣的区域(RoI)。我们想从每个RoI创建嵌入(嵌入-将任意实体(一张图片)映射到某个矢量)。



例如,在R-CNN设置中,我们有一张图像和一个候选区域突出显示引擎,该引擎为图像的潜在有趣部分创建了边界框。现在,我们要为图像的每个建议部分创建一个嵌入。



突出显示图像中的候选区域



简单地裁剪每个建议的区域将不起作用,因为我们希望将生成的嵌入彼此叠加,并且建议的区域不一定具有相同的形状!



, . ?



- (pooling).



max pooling, ( ) , , .



maxpool操作将每个区域划分为相同大小的池



maxpool

, – : .



. RoI ?



ROI池化操作用相等大小的网格划分图像的池化部分。



ROI Pooling , pooling.

, ROI Pooling.



RoI Pooling.



RoI Pooling — . , RoI, . , .

-, ( RoI Pooling ), ( ), (end-to-end) (single-pass) .



快速R-CNN演示RoI池化,作者:Ross Girshik



Fast R-CNN, RoI Pooling,

, R-CNN , (RoI). RoI Pooling CNN . .

-, -, RoI Pooling (visual attention).



Hara等人的视觉对象检测注意力网络,展示了ROI合并。



Attentional Network , ROI Pooling, Hara ..

Attentional Network , Hara attention, ROI ROI Pooling. (t = 1), ROI Pooling (Fully Connected). Glimpse () (t = 2) , ROI Pooling. .



.



, , ROI.



:



  • (batch) . , . (batch_size, img_width, img_height, n_channels), batch_size- , img_width — , img_height — , n_channels — .
  • (batch) ROI. , - . 4 , (batch_size, n_rois, 4), batch_size — ROI, n_rois — ROI.


:



  • , ROI. (batch_size, n_rois, pooled_width, pooled_height, n_channels). batch_size- , n_rois — ROI, pooled_width — , pooled_height— , n_channels — .


Keras



Keras Layer.



tf.keras init, build call . , build , , . compute_output_shape.



, .



def __init__(self, pooled_height, pooled_width, **kwargs):
    self.pooled_height = pooled_height
    self.pooled_width = pooled_width
    super(ROIPoolingLayer, self).__init__(**kwargs)


. , . .



def compute_output_shape(self, input_shape):
    """ Returns the shape of the ROI Layer output
    """
    feature_map_shape, rois_shape = input_shape
    assert feature_map_shape[0] == rois_shape[0]
    batch_size = feature_map_shape[0]
    n_rois = rois_shape[1]
    n_channels = feature_map_shape[3]
    return (batch_size, n_rois, self.pooled_height, 
            self.pooled_width, n_channels)


compute_output_shape — , , .



(call). — , . , ROI Pooling, .



, , ROI .



.



@staticmethod
def _pool_roi(feature_map, roi, pooled_height, pooled_width):
  """ Applies ROI Pooling to a single image and a single ROI
  """# Compute the region of interest        
  feature_map_height = int(feature_map.shape[0])
  feature_map_width  = int(feature_map.shape[1])

  h_start = tf.cast(feature_map_height * roi[0], 'int32')
  w_start = tf.cast(feature_map_width  * roi[1], 'int32')
  h_end   = tf.cast(feature_map_height * roi[2], 'int32')
  w_end   = tf.cast(feature_map_width  * roi[3], 'int32')

  region = feature_map[h_start:h_end, w_start:w_end, :]
...


, .



, ROI , 0 1. , ROI 4- , (x_min, y_min, x_max, y_max ).

ROI , , , : , , ROI Pooling, , , ROI.



, TensorFlow.



...
# Divide the region into non overlapping areas
region_height = h_end - h_start
region_width  = w_end - w_start
h_step = tf.cast(region_height / pooled_height, 'int32')
w_step = tf.cast(region_width  / pooled_width , 'int32')

areas = [[(
           i*h_step, 
           j*w_step, 
           (i+1)*h_step if i+1 < pooled_height else region_height, 
           (j+1)*w_step if j+1 < pooled_width else region_width
          ) 
          for j in range(pooled_width)] 
         for i in range(pooled_height)]
...


ROI, .



2D , , , .



, , , , ROI (region_height // pooled_height, region_width // pooled_width), ROI, .



2D , .



...
# Take the maximum of each area and stack the result
def pool_area(x): 
  return tf.math.reduce_max(region[x[0]:x[2],x[1]:x[3],:], axis=[0,1])

pooled_features = tf.stack([[pool_area(x) for x in row] for row in areas])
return pooled_features


. pool_area, , , , , .

pool_area , , list comprehension .



(pooled_height, pooled_width, n_channels), RoI .



— RoI . tf.map_fn (n_rois, pooled_height, pooled_width, n_channels).



@staticmethod
def _pool_rois(feature_map, rois, pooled_height, pooled_width):
  """ Applies ROI pooling for a single image and varios ROIs
  """
  def curried_pool_roi(roi): 
    return ROIPoolingLayer._pool_roi(feature_map, roi, 
                                     pooled_height, pooled_width)

  pooled_areas = tf.map_fn(curried_pool_roi, rois, dtype=tf.float32)
  return pooled_areas


, . tf.map_fn (, x), , .



def call(self, x):
  """ Maps the input tensor of the ROI layer to its output
  """
  def curried_pool_rois(x): 
    return ROIPoolingLayer._pool_rois(x[0], x[1], 
                                      self.pooled_height, 
                                      self.pooled_width)

  pooled_areas = tf.map_fn(curried_pool_rois, x, dtype=tf.float32)
  return pooled_areas


, dtype tf.map_fn , . , , , Tensorflow.



:



import tensorflow as tf
from tensorflow.keras.layers import Layer

class ROIPoolingLayer(Layer):
    """ Implements Region Of Interest Max Pooling 
        for channel-first images and relative bounding box coordinates

        # Constructor parameters
            pooled_height, pooled_width (int) -- 
              specify height and width of layer outputs

        Shape of inputs
            [(batch_size, pooled_height, pooled_width, n_channels),
             (batch_size, num_rois, 4)]

        Shape of output
            (batch_size, num_rois, pooled_height, pooled_width, n_channels)

    """
    def __init__(self, pooled_height, pooled_width, **kwargs):
        self.pooled_height = pooled_height
        self.pooled_width = pooled_width

        super(ROIPoolingLayer, self).__init__(**kwargs)

    def compute_output_shape(self, input_shape):
        """ Returns the shape of the ROI Layer output
        """
        feature_map_shape, rois_shape = input_shape
        assert feature_map_shape[0] == rois_shape[0]
        batch_size = feature_map_shape[0]
        n_rois = rois_shape[1]
        n_channels = feature_map_shape[3]
        return (batch_size, n_rois, self.pooled_height, 
                self.pooled_width, n_channels)

    def call(self, x):
        """ Maps the input tensor of the ROI layer to its output

            # Parameters
                x[0] -- Convolutional feature map tensor,
                        shape (batch_size, pooled_height, pooled_width, n_channels)
                x[1] -- Tensor of region of interests from candidate bounding boxes,
                        shape (batch_size, num_rois, 4)
                        Each region of interest is defined by four relative 
                        coordinates (x_min, y_min, x_max, y_max) between 0 and 1
            # Output
                pooled_areas -- Tensor with the pooled region of interest, shape
                    (batch_size, num_rois, pooled_height, pooled_width, n_channels)
        """
        def curried_pool_rois(x): 
          return ROIPoolingLayer._pool_rois(x[0], x[1], 
                                            self.pooled_height, 
                                            self.pooled_width)

        pooled_areas = tf.map_fn(curried_pool_rois, x, dtype=tf.float32)

        return pooled_areas

    @staticmethod
    def _pool_rois(feature_map, rois, pooled_height, pooled_width):
        """ Applies ROI pooling for a single image and varios ROIs
        """
        def curried_pool_roi(roi): 
          return ROIPoolingLayer._pool_roi(feature_map, roi, 
                                           pooled_height, pooled_width)

        pooled_areas = tf.map_fn(curried_pool_roi, rois, dtype=tf.float32)
        return pooled_areas

    @staticmethod
    def _pool_roi(feature_map, roi, pooled_height, pooled_width):
        """ Applies ROI pooling to a single image and a single region of interest
        """

        # Compute the region of interest        
        feature_map_height = int(feature_map.shape[0])
        feature_map_width  = int(feature_map.shape[1])

        h_start = tf.cast(feature_map_height * roi[0], 'int32')
        w_start = tf.cast(feature_map_width  * roi[1], 'int32')
        h_end   = tf.cast(feature_map_height * roi[2], 'int32')
        w_end   = tf.cast(feature_map_width  * roi[3], 'int32')

        region = feature_map[h_start:h_end, w_start:w_end, :]

        # Divide the region into non overlapping areas
        region_height = h_end - h_start
        region_width  = w_end - w_start
        h_step = tf.cast( region_height / pooled_height, 'int32')
        w_step = tf.cast( region_width  / pooled_width , 'int32')

        areas = [[(
                    i*h_step, 
                    j*w_step, 
                    (i+1)*h_step if i+1 < pooled_height else region_height, 
                    (j+1)*w_step if j+1 < pooled_width else region_width
                   ) 
                   for j in range(pooled_width)] 
                  for i in range(pooled_height)]

        # take the maximum of each area and stack the result
        def pool_area(x): 
          return tf.math.reduce_max(region[x[0]:x[2], x[1]:x[3], :], axis=[0,1])

        pooled_features = tf.stack([[pool_area(x) for x in row] for row in areas])
        return pooled_features


! , 1- 100x200, 2 RoI, 7x3. , 4 . — 1, 50 (-1, -3).



import numpy as np# Define parameters
batch_size = 1
img_height = 200
img_width = 100
n_channels = 1
n_rois = 2
pooled_height = 3
pooled_width = 7# Create feature map input
feature_maps_shape = (batch_size, img_height, img_width, n_channels)
feature_maps_tf = tf.placeholder(tf.float32, shape=feature_maps_shape)
feature_maps_np = np.ones(feature_maps_tf.shape, dtype='float32')
feature_maps_np[0, img_height-1, img_width-3, 0] = 50
print(f"feature_maps_np.shape = {feature_maps_np.shape}")# Create batch size
roiss_tf = tf.placeholder(tf.float32, shape=(batch_size, n_rois, 4))
roiss_np = np.asarray([[[0.5,0.2,0.7,0.4], [0.0,0.0,1.0,1.0]]], dtype='float32')
print(f"roiss_np.shape = {roiss_np.shape}")# Create layer
roi_layer = ROIPoolingLayer(pooled_height, pooled_width)
pooled_features = roi_layer([feature_maps_tf, roiss_tf])
print(f"output shape of layer call = {pooled_features.shape}")# Run tensorflow session
with tf.Session() as session:
    result = session.run(pooled_features, 
                         feed_dict={feature_maps_tf:feature_maps_np,  
                                    roiss_tf:roiss_np})

print(f"result.shape = {result.shape}")
print(f"first  roi embedding=\n{result[0,0,:,:,0]}")
print(f"second roi embedding=\n{result[0,1,:,:,0]}")


, TensorFlow, .



:



feature_maps_np.shape = (1, 200, 100, 1)
roiss_np.shape = (1, 2, 4)
output shape of layer call = (1, 2, 3, 7, 1)
result.shape = (1, 2, 3, 7, 1)
first  roi embedding=
[[1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1.]]
second roi embedding=
[[ 1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1. 50.]]


, . — 1, , 50.



, !





, !



, ROI Pooling (attention). , , Keras , ROI Pooling .



, , , !



Ari Brill, Tjark Miener Bryan Kim .








All Articles